

Tetrahedron

Tetrahedron Vol. 63, No. 36, 2007

Contents

REPORT

Synthesis and reactivity of 4-, 5- and 6-azaindoles Florence Popowycz, Jean-Yves Mérour and Benoît Joseph*

ARTICLES

Transamidation reactions of 2-(2-sulfonylguanidino)acetamides M. Eugenia González-Rosende, Encarna Castillo, Belén Asíns, Rachid Mamouni and José Sepúlveda-Arques*

Novel solid-supported dimerization-heteroannulation of chalcones: simple and efficient synthesis of pp 8715–8722 2,4,6-triaryl-3-methylarylpyridines

Anil K. Verma, Summon Koul, Ajay P. S. Pannu and Tej K. Razdan*

pp 8689-8707

pp 8709-8714

Silica supported perchloric acid (HClO₄–SiO₂): an efficient reagent for the preparation of primary pp 8723–8726 carbamates under solvent-free conditions

Ali Reza Modarresi-Alam,* Ferydoon Khamooshi, Mahmoud Nasrollahzadeh and Homeyra Alsadat Amirazizi

The synthesis of primary carbamates from structurally diverse compounds containing a hydroxyl group has been performed in high yields and purity, and without any epimerization under solvent-free conditions using $HCIO_4$ –SiO₂ as a mild, convenient, and effective reagent. The procedure is operationally simple, efficient, and environmentally benign.

Synthesis of new tridentate chiral aminoalcohols by a multicomponent reaction and their evaluation pp 8727–8734 as ligands for catalytic asymmetric Strecker reaction

Vorawit Banphavichit, Worawan Bhanthumnavin and Tirayut Vilaivan*

A novel method for the synthesis of chiral epoxides from styrene derivatives using chiral acids in presence of *Pseudomonas* lipase G6 [PSL G6] and hydrogen peroxide Kuladip Sarma, Nishi Bhati, Naleen Borthakur and Amrit Goswami^{*}

Microwave-assisted arylation of *rac-(E)*-3-acetoxy-1,3-diphenylprop-1-ene with arylboronic acids pp 8742–8745 Viera Poláčková, Štefan Toma^{*} and C. Oliver Kappe

B. Chandrasekhar, A. Madhan and B. Venkateswara Rao*

P = protective groups.

First total synthesis of modiolide A, based on the whole-cell yeast-catalyzed asymmetric reduction of pp 8752–8760 a propargyl ketone

Masaaki Matsuda, Takahiro Yamazaki, Ken-ichi Fuhshuku and Takeshi Sugai*

(*N*-7-Azaindolyl)oligothiophenes: synthesis, characterization, and photophysical properties Jin Seok Hong, Hyung Sup Shim, Tae-Jeong Kim^{*} and Youngjin Kang^{*}

A new series of mono- and oligothiophenes capped by 7-azaindoles such as 2-(*N*-azaindolyl)thiophene (1), 2-(*N*-azaindolyl)-5'-(bromo)oligothiophenes (**2a-4a**), and 2,5'-bis(*N*-azaindolyl)oligothiophenes (**2b-4b**) have been prepared and characterized. The crystal structures of **2b**, **3b**, and **4b** have been determined by single-crystal X-ray diffractions. The thermal, photophysical, and electrochemical properties of all new compounds have been measured.

Metachromins L–Q, new sesquiterpenoid quinones with an amino acid residue from sponge *Spongia* sp.

Yohei Takahashi, Takaaki Kubota, Jane Fromont and Jun'ichi Kobayashi*

(+) + (+)

pp 8761-8769

pp 8770-8773

Reactions of alanes and aluminates with tri-substituted epoxides. Development of a stereospecific pp 8774–8780 alkynylation at the more hindered carbon

Hongda Zhao, Darren W. Engers, Christian L. Morales and Brian L. Pagenkopf*

Short synthesis of piperizinohydroisoquinoline ring by selective Pictet–Spengler cyclization and pp 8781–8787 evaluation of antitumor activity

Yu-An Chang, Tsung-Hsien Sun, Michael Y. Chiang, Pei-Jung Lu, Yi-Ting Huang, Li-Ching Liang and Chi $\rm Wi\ Ong^*$

Synthesis of phenanthrene derivatives through the net [5+5]-cycloaddition of prenylated carbene pp 8788–8793 complexes with 2-alkynylbenzaldehyde derivatives

Suneetha Menon, Dilip Sinha-Mahapatra and James W. Herndon*

Glycine and L-glutamic acid-based dendritic gelators

Wu-Song Li, Xin-Ru Jia,* Bing-Bing Wang, Yan Ji and Yen Wei*

pp 8794-8800

8681

The coupling of butylvinvltellurides with organometallic reagents catalysed by nickel complexes Cristiano Raminelli, João Gargalaka, Jr., Cláudio C. Silveira and João V. Comasseto*

pp 8801-8809

Radical mediated stereoselective synthesis of meso-7,11-dimethylheptadecane, a female sex pheromone pp 8810–8814 component of the spring hemlock looper and the pitch pine looper

Hajime Nagano,* Rie Kuwahara and Fumika Yokoyama

The title compound was synthesized from ethyl 2-(bromomethyl)propenoate in nine steps and 14% overall yield. The key step in the synthesis is the depicted chelation-controlled diastereoselective radical reaction.

Palladium-catalyzed regio- and diastereo-selective allylic alkylation using 2-(diphenylphosphino)pp 8815-8824 benzoic acid: construction of vicinal quaternary and tertiary carbon centers

Motoi Kawatsura,* Daiji Ikeda, Yuji Komatsu, Kana Mitani, Takeshi Tanaka and Junichi Uenishi

Cholic acid-based fluorescent sensor for mercuric and methyl mercuric ion in aqueous solutions pp 8825-8830 Hao Wang and Wing-Hong Chan*

NMR, FTIR, ESI-MS and semiempirical study of a new 2-(2-hydroxyethoxy)ethyl ester of monensin A pp 8831–8839 and its complexes with alkali metal cations

Adam Huczyński, Piotr Przybylski and Bogumil Brzezinski*

Tetrathiafulvalene-functionalized triptycenes: synthetic protocols and elucidation of intramolecular pp 8840–8854 Coulomb repulsions in the oxidized species

Jiří Rybáček, Markéta Rybáčková, Martin Høj, Martin Bělohradský,* Petr Holý, Kristine Kilså* and Mogens Brøndsted Nielsen*

PS-IIDQ: a supported coupling reagent for efficient and general amide bond formation Eric Valeur and Mark Bradley*

pp 8855-8871

New cup-shaped α -cyclodextrin derivatives and a study of their catalytic properties in oxidation reactions

pp 8872-8880

Oscar Lopez Lopez, Lavinia Marinescu and Mikael Bols*

Synthesis and characterization of *N*-carbazole end-capped oligofluorene-thiophenes

Vinich Promarak,* Auradee Punkvuang, Taweesak Sudyoadsuk, Siriporn Jungsuttiwong, Sayant Saengsuwan, Tinnagon Keawin and Karnokkorn Sirithip

Synthesis, complexation, and photoisomerization studies on some chiral monocyclic stilbenophanes pp 8891–8901 and bis-cyclophanes

Perumal Rajakumar* and Subramaniyan Selvam

Halogens in γ-position enhance the acidity of alkyl aryl sulfones and alkane nitriles M. Judka, A. Wojtasiewicz, W. Danikiewicz and M. Makosza*

pp 8902-8909

On the basis of measurement of the rates of base-catalyzed deuterium exchange, values of pK_a of the series of 3-halopropyl aryl sulfones and 4-halobutyronitriles were estimated.

Intramolecular 1,5- versus 1,6-hydrogen abstraction reaction promoted by alkoxyl radicals in pyranose and furanose models

pp 8910-8920

Cosme G. Francisco, Raimundo Freire, Antonio J. Herrera, Inés Pérez-Martín and Ernesto Suárez*

 $\begin{array}{c} \mathsf{RO} \\ \mathsf{HO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \\ \mathsf{R}^1 \end{array} \xrightarrow{\mathsf{DIB}} \begin{array}{c} \mathsf{RO} \\ \mathsf{I}_2 \\ \mathsf{RO}_2 \\ \mathsf{R}^1 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \\ \mathsf{R}^1 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO}_2 \\ \mathsf{RO}_2 \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \mathsf{RO} \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \begin{array}{c} \mathsf{RO} \\ \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \end{array} \xrightarrow{\mathsf{RO}} \end{array}$

R¹ = O-alkyl, O-acyl, H

pp 8881-8890

Lewis acid promoted Mannich type reactions of α, α -dichloro aldimines with potassium organotrifluoroborates

Sara Stas and Kourosch Abbaspour Tehrani*

Reaction of α-halo ketone with 2-aminothiol: a new synthesis of thiazolidines with the oxo group pp 8932–8938 migrated to the original position occupied by halogen atom

Masatoshi Matsushita, T. Tomoyoshi Takahashi,* Takamitsu Utsukihara, Yohei Shimizu, Rob J. Jansen and C. Akira Horiuchi*

Nor-limonoid and homoisoanticopalane lactones from methyl isoanticopalate

Pilar Basabe,* Sergio Delgado, Isidro S. Marcos, David Diez, Alberto Diego, Mónica de Román, Francisca Sanz and J. G. Urones

Formation of dihydrouracils via cyclization of *N*-substituted 3-thioureidopropanoic acids and facile pp 8949–8953 desulfurization

Carina M. L. Delpiccolo, Fernando Albericio,* Robert A. Schiksnis and Enrique L. Michelotti*

Cyclization of *N*-3 substituted 3-thioureidopropanoic acids in isobutyric anhydride at high temperature resulted in the unexpected formation of *N*-3,*N*-1-substituted dihydrouracils, as confirmed by thorough spectroscopic characterization. A mechanism based on the identification of intermediates observed at lower reaction temperatures is proposed.

pp 8939-8948

Kristof T. J. Loones, Bert U. W. Maes* and Roger A. Dommisse

Converting 9-methyldipyrrinones to 9-H and 9-CHO dipyrrinones

Stefan E. Boiadjiev and David A. Lightner*

9-Methyldipyrrinones can be cycled through biliverdinoids and converted into 9-H and 9-CHO dipyrrinones by cleavage with thiobarbituric acid as well as other carbon acids, new reaction conditions, and a reverse Knövenagel reaction.

Development of a novel nucleoside analogue with S-type sugar conformation: 2'-deoxy-*trans*-3',4'- pp 8977–8986 bridged nucleic acids

Tomohisa Osaki, Satoshi Obika, Yasuki Harada, Yasunori Mitsuoka, Kensaku Sugaya, Mitsuaki Sekiguchi, Somjing Roongjang and Takeshi Imanishi*

A facile reaction involving zwitterionic intermediates for the synthesis of 5-hydroxy-2*H*-pyrrol-2-one pp 8987–8992 derivatives

Ming-Jin Fan, Bo Qian, Lian-Biao Zhao and Yong-Min Liang*

$$Cy-NC + R_1 + R_2 + R_2 + R_3 \xrightarrow{\text{piperidine}}_{R_3 \text{ toluene}} + R_2 + R_3 \xrightarrow{\text{piperidine}}_{R_3 \text{ toluene}} + R_2 + R_2 \xrightarrow{\text{piperidine}}_{R_2 + R_2} + R_3 \xrightarrow{\text{piperidine}}_{R_2 + R_2} +$$

pp 8954-8961

pp 8962-8976

Trypanocidal labdane diterpenoids from the seeds of *Aframomum aulacocarpos* (**Zingiberaceae**) Sylvain Valère T. Sob, Pierre Tane,* Bonaventure T. Ngadjui,* Joseph D. Connolly and Dawei Ma

pp 8993-8998

Heck-like coupling and Pictet–Spengler reaction for the synthesis of benzothieno[**3**,**2**-*c*]**quinolines pp 8999–9006** Emilie David, Stéphane Pellet-Rostaing and Marc Lemaire*

Intramolecular and intermolecular Schmidt reactions of alkyl azides with aldehydes Huey-Lih Lee and Jeffrey Aubé* pp 9007-9015

The acid-promoted reactions of alkyl azides to form amides were studied in both intramolecular and intermolecular settings.

Epoxide as an aldehyde equivalent in allyl-transfer reaction with γ -adduct of homoallylic alcohol pp 9016–9022 (allyl donor) giving α -adduct of homoallylic alcohol

Junzo Nokami,* Kazuho Maruoka, Taichi Souda and Nobuo Tanaka

OTHER CONTENTS

Corrigendum Calendar

*Corresponding author ()⁺ Supplementary data available via ScienceDirect

Full text of this journal is available, on-line from **ScienceDirect**. Visit **www.sciencedirect.com** for more information.

Abstracted/indexed in: AGRICOLA, Beilstein, BIOSIS Previews, CAB Abstracts, Chemical Abstracts. Current Contents: Life Sciences, Current Contents: Physical, Chemical and Earth Sciences, Current Contents Search, Derwent Drug File, Ei compendex, EMBASE/Excerpta Medica, Medline, PASCAL, Research Alert, Science Citation Index, SciSearch. Also covered in the abstract and citation database SCOPUS[®]. Full text available on ScienceDirect[®]

p 9023 p I

